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A new formalism of the dynamical diffraction theory is proposed in order to take into account the 
statistical nature of lattice distortions. It is postulated that the observed intensity is given by an ensemble 
average of the intensity field derived from the wave equations of Takagi-Taupin type. The formalism 
leads to exactly the same results as those of the conventional dynamical theory for ideally perfect 
crystals and the results of the conventional kinematical theory for ideally imperfect crystals. The general 
relations are established among the integrated diffraction powers for three types of incident wave; 
namely, a spherical wave (narrow beam), a plane wave and the wave from an incoherent homogeneous 
source (wide beam). This paper is a preparation for the following one on secondary extinction [Kato 
Acta Cryst., (1976) A32, 458-466]. 

1. Introduction 

In the history of diffraction crystallography extinction 
has been one of the important problems. Darwin 
(1914a, b; 1922) proposed two distinct concepts; pri- 
mary extinction and secondary extinction. Since then, 
the theory of the former has been developed on the 
basis of wave equations, whereas the theory of the 
latter has been worked out on the basis of energy- 
transfer equations, in which perfect incoherence of the 
relevant waves is assumed at the beginning. In prin- 
ciple, however, any optical theory ought to be devel- 
oped without making assumptions about coherence. 
Apparent incoherence is brought about by taking a 
statistical average of the medium concerned. 

So far, no bridge has been constructed between the 
two types of extinction. The present paper deals with 
the fundamental problem of connecting them. Starting 
from the wave equation of Takagi-Taupin type (Taka- 
gi, 1962, 1969; Taupin, 1964; Kato, 1973)and intro- 
ducing a spatial correlation length z to characterize 
the crystalline medium, one can derive the intensity 
fields for ideally perfect crystals in one extreme case 
(z>crystal size) and for ideally imperfect crystals in 
another extreme case (z_0).  In the following paper 
(Kato, 1976) the intermediate cases will be discussed 
with particular reference to secondary extinction. 

The formulation is based on a postulation that the 
observed intensity is an average of the dynamical in- 
tensities over a statistical ensemble of distorted crys- 
tals. This approach will open a new field of application 
of dynamical diffraction to statistically distorted crys- 
tals. 

In this series of papers, for simplicity, the intensity 
fields in the Laue cases due to a spherical wave are 
mainly considered. In the last section of this paper, 
however, the relations are given among the integrated 
powers expected when the incident wave is either a 
spherical wave or a plane wave, as well as when the 

incident beam is incoherent and homogeneous. The 
last case corresponds best to practical experiments. 

2. Fundamental equations 

We shall start with the wave equations of Takagi- 
Taupin type: 

~do 
~So - i t c - °  exp iG . d o (la) 

~dg 
-Oso- = itc° exp - iG.  do, (lb) 

where do and d o are the wave fields of the direct and 
Bragg-reflected waves* respectively, and % is related 
to the structure factor F o by 

2 C  e 2 
1¢ o - - -  F o (2) 

v m c  2 

(2: wavelength, C: polarization factor, v: unit-cell vol- 
ume, e, m and c: the physical constants in the conven- 
tional usage.)The phase G is related to the displace- 
ment u of the lattice points as 

G =  2~z(g. u),  (3) 

where g is the reflexion vector concerned. In this paper 
{exp + iG} are called lattice phase factors. The quan- 
tities % and K_g are constant but G is a function of 
position. A position is specified by the oblique coor- 
dinates (So,So), the axes being taken along the direc- 
tions of O and G beams. 

The details of the derivation of equations (1) and the 
assumptions involved are described in the papers of 
Takagi (1962, 1969) and Taupin (1964) and also by 
Kato (1973). 

The energy-transfer equations on which the recent 
theories of secondary extinction were developed can 

* Hereafter, they will be called O and G waves. 
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be written in the form (Hamilton, 1957; Werner & Ar- 
rott, 1965; Werner, Arrott, King & Kendrick, 1966; 
Zachariasen, 1967a, b; Becker & Coppens, 1974), 

alo 
- 6 i o + 6 i g  (4a) 

COSo 

axg 
- 6 i o + 6 i o ,  O b )  OSo 

where Io and I o are the intensity fields of O and G 
beams and 6 is the coupling constant. It is defined by 

= I + 0 W(0dq, (5a) 

where a(O) is the angular distribution of the diffracted 
intensity due to a mosaic block and W(O) is the an- 
gular distribution of the mosaic blocks within a spec- 
imen. Zachariasen (1967b) defined two special cases, 
namely 

Type I: W-dominant case; 6(e).., Q w(e) (5b) 

Type II: a-dominant case; 6(e) ~ a(e), (5c) 

where Q is the integrated power per unit volume owing 
to the kinematical theory, which is given by 

,,]3CZlFol2 [ e z ~2 
Q -  v 2 sin 20B \m---d! " (6) 

It is worth noting the similarities and differences be- 
tween the mathematical structures of equations (1) and 
(4). To see this, the enhanced intensities 

Jo = exp {6(So+So)}Io (7a) 
Jo = exp {6(So+So)}I o (7b) 

are introduced. Then one can obtain the relations 

aJo 
OSo - 6J° (8a) 

oso - (8b) 
t~So 

The coupling constants in equations (1) are complex 
and depend upon position, whereas in equations (4) 
and (8) they are real and usually assumed to be con- 
stant throughout the crystal. 

In the both equations (I) and equations (4), the nor- 
mal photoelectric absorption has been eliminated at 
the stage of formulating the differential equations. The 
intensity fields including the absorption can be written 
down as follows when do and d o are obtained: 

I(oa) =exp --~no(So +so). Idol" (9a) 
I(o") = exp -~no(So + so). Idol 2, (9b) 

where/no is the linear absorption coefficient. Similarly, 
if Jo and Jo are given, the intensities can be written in 
the form: 

I(oa) = exp - ( / no+6) (So+So) . J  o (10a) 
I p '  = exp -(/no + 6) (So + so). Jo. (10b) 

For these reasons we shall not bother hereafter about 
the normal absorption factor, exp -~no(So +so). 

In the following, we shall start with equations (1). 
In general cases, %re_ o has a small imaginary com- 
ponent. This part accounts for Borrmann absorption. 
In equations (4), however, the imaginary part of %x_ o 
does not appear explicitly. The conventional theory of 
secondary extinction cannot take into account the 
Borrmann absorption, unless some ad hoc assump- 
tions are introduced. 

3. The formal solution of equations (1) 

It is more convenient to rewrite equations (1) with the 
recurrence formulae 

do(n + 1,m)=do(n,m) 
+iQc_oa ) exp iG(n,m) . do(n,m ) ( l la )  

do(n, m + 1) = do(n, m) 
+i(%a) exp - iG(n ,m)  . do(n,m) , ( l lb)  

where the arguments (n, m) are the abbreviations of the 
coordinates (na, ma) =- (So, So) and a is unit increment 
of the coordinates, which will be made infinitesimal in 
the final expression for the intensity. The relations 
among the field components are illustrated in Fig. 1. 
In the following the kinks of the lines corresponding 
to do ~ d o and d o --+ do will be called (a)-type and 
(b)-type respectively. 

To obtain a concrete solution, one needs the bound- 
ary conditions for the wave fields. Here, we shall con- 
sider the Laue case excited by the incident wave 
Do(so, So) = A&(so). In order to fit the present formalism, 
the &-function is replaced by the discrete function in 
the way, 

Do(O,m)=A/a m = 0  (12a) 

= 0  m-#0 .  (12b) 

No wave arrives at the line m = 0  in the direction of 
G beam, so that one can put 

ho(n,O)=O. (12c) 

If conditions are matched, the crystal waves do(O,m) 
and do(n,O ) must satisfy the same conditions as equa- 
tions (12). 

~ ) (n,•d9 
(n , m) 

do(n+b m) 

(a) (b) 

Fig. 1. Bragg reflexion; the kink points (n, m) denote reflexions 
of types (a) and (b). 
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We shall be interested in the wave fields at an ob- 
servation point specified by (N,M). If one looks at 
equations (11) or Fig. 1, the wave fields are composed 
of zigzag routes starting from the entrance point (0, 0) 
and arriving at the observation point (N,M). Thus, 
one can write the wave fields as 

do(N,M)= ~ AR exp iPR (13a) 
R 

do(N,M)= ~ BR exp iQR , (13b) 
R 

where R denotes symbolically an individual route 
which is specified by the kink points. Explicitly the 
amplitudes AR and BR are given by 

a2,  14o, 

B . = ( A ) ( i # c o ) ( - t c t c )  -o , (14b) 

where the integer r is the total number of (b)-type 
kinks. As can be seen in Fig. 2, the number of kinks 
of type (a) must be identical to r for AR and to r +  1 
for BR. 

The phases PR and QR depend on the individual posi- 
tions of the kinks. They have the forms 

PR = - 6 ( n l ,  O) + 6(n,m~). . . 
- G(n,, m,_ t) + G(n,, m,) (m, = M) (15a) 

Q, = - G(nl, O) + G(nl, rn~). . . 
+G(n,,m,)-G(n,+l,m,) (n,+l=N) (15b) 

where (n~,mt) specifies the position of a kink (b) and 
(n~,mi_a) that of a kink (a). One obtains the formal 
solutions for the wave fields do(N,M) and do(N,M ) 
by inserting equations (14) and (15) into equations (13). 

4. The observed intensity fields 

Here we postulate that the observed intensity is the 
average of the intensity over a statistical ensemble of 

So 

Sg 

~ IN,M) 

dg do 
Fig. 2. Zigzag routes representing multiple reflexions. 

the displacement u at the kink points. Then one can 
obtain immediately the expressions for the observed 
intensities as 

(So)= ~ ~A,A] , ( exp  i(PR--PR')) (16a) 
R R '  

(Io)= ~ ~BRB~,(exp i (Qg-QR,) ) .  (16b) 
R R '  

Here use is made the fact that the amplitudes AR and 
BR are independent of the ensemble assumed. In this 
section we shall calculate explicitly the intensity for 
two extreme cases, namely ideally perfect and ideally 
imperfect crystals. 

(1) Perfect crystals 
Equations (16a, b) can be rewritten in the form 

+~, ~A,A] , (expi (PR--PR,) - - I )  (17a) 

(Io)= E BR E B~, 
+ 5  5BRB~,(exp i ( Q R - Q R , ) - I ) .  (17b) 

In perfect crystals, G(n, m) are constant throughout the 
crystal so that the averages ( )  are zero. Thus, it is 
enough to calculate ~AR and ~BR. This can be done 
by a combinatorial calculation. Since AR and BR are 
determined only by the kink number as shown in equa- 
tions (14), the intensity fields are given by 

Io(N,M)=IAIal 2 (M=O) (18a) 
t 

=[ ~ oc,(-xgn:_o)raerl2lAlal z (M>0) (18b) 
r----1 

Io(N , M)=[xolZl ~ fl,(-lcox_3"aZ'+~[ZlAlal 2, (18c) 
r----0 

where c~, and/7, are the possible number of routes hav- 
ing r kinks of type (b). Here the average sign ( ) of Io 
and I o is omitted. 

First we shall consider ~,. Since r kinks of type (a) 
are distributed over N possible lines of the G direc- 
tion and r - 1  kinks of type (b) over M - 1  possible 
lines of the O direction [the last kink must be always 
on the line m,=M; see equation (15a)], one can see 
that 

N! ( M -  1)I (19a) 
o~,. = r! (N-r ) !  " ( r - 1 ) ! ( M - r ) !  " 

By similar arguments it is not difficult to see that 

N! M! 
,8 , -  r ! (N- r ) ! "  r ! (M-r ) !  " (19b) 

Denoting the observation point by the coordinates 
(So, so)= (Na, Ma), and letting a go to zero, one obtains 

(sola)%la)'-' (goa) 
o~,. = r!(r-  1)! 

(sola)'(sola)" (20b) 
fl" = rM 
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Inserting these into equations (18), one obtains 

** 1 
xox_o) SoSo I IAI (21a) l°(s°'s°)=l,=i ~ r ! ( r -1 ) !  ( -  , ,  ~-12 2 

1 , , , 2  12 IJso, s~)--l~121 ~, r~.rW. (-~:~x-~)SoS, I 1,4 • (21b) 
r = 0  • • 

It is to be noticed that the results are independent of 
the choice of the coordinate increment a. By consult- 
ing the definitions of the Bessel functions J0 and J_x = 
J~, finally, one obtains the intensity fields 

lo(so,So) = IKo~-ol so IJl[2(~co~_o),/e(soSo),/Z]lZlAi2 (22a) 
S o 

Io(so, So)= IxolZlJo(2(xox_o)UZ(SoSo)l/Z]lZlAI z. (22b) 

The results are identical to those originally obtained 
by the spherical-wave theory (Kato, 1960, 1961, 1968) 
under equivalent boundary conditions to those de- 
scribed by equations (12). 

So far we have considered only the Laue cases. If  
the crystal is bounded by a pair of plane surfaces, one 
can obtain the wave fields EAR and ~'BR under the 
geometrical conditions of Laue-(Bragg)" and (Bragg) m 
cases* with the boundary conditions equivalent to 
equation (12). They were treated by Uragami (1969, 
1970, 1971) on the basis of the Riemann function and 
independently by Saka, Katagawa & Kato (1971a, b, 
1972) on the basis of Fourier transformation. Thus, in 
principle, one can write down the intensity fields for 
perfect polyhedral crystals. This point has been dis- 
cussed in the last paper of Saka et al. mentioned above. 

(2) Imperfect crystals 
Equations (16a, b) can also be rewritten in the form 

(Io5= ~ ARA~ + ~ ~ '  ARA~,(exp i(PR--PR,))' (23a) 
R R R '  

(Ig)= ~ BRB~ + ~ ~ '  BRB~ (exp i(QR-QR,)) (23b) 
R R R '  

where Z' means summation omitting the term R = R'. 
In ideally imperfect crystals, the random-phase ap- 
proximation can be used so that only the first term in 
each case remains. Again a combinatorial calculation 
similar to case (1) can be used. From equations (14), 
we have 

Io(N,M)=IAI z ~ zr  4 r - 2  ~,lxox-ol a (24a) 
r - - - - 1  

IofN, M ) =  IAI21mol '- ~ n *x x 12r'o4r (24b) f _ ~  / ~ r l  g - - g l  "~ " 
r = O  

As the increment a is decreased to zero, Io(N, M) tends 
to zero except for M = 0 ,  where Io(N,M) goes to in- 
finity. On the other hand, I o tends to IAI21xol 2. These 
results are identical to those expected from kinematical 
theory, as will be shown in equation (28b). The kine- 

* For the new terminology specifying the various cases, see 
Azaroff, Kaplow, Kato, Weiss, Wilson & Young (1974). 

matical solution is independent of whether the geo- 
metrical conditions are those of the Laue cases or of 
the Bragg cases. 

5. The integrated powers 

The present formulation is based on the spherical-wave 
theory, whereas conventional diffraction theory is based 
on the plane-wave theory. The former is adequate for 
the case where the crystal is sufficiently large and part 
of the crystal is illuminated by a narrow incident wave. 
In practice, however, we often encounter the case 
where the crystal is bathed in the incident beam as 
shown in Fig. 3. In this section we shall first consider 
the relation of the integrated powers in the spherical 
and plane-wave theories and then the integrated power 
illuminated by the homogeneous incident beam. 

In the spherical-wave theory, the incident wave can 
be written to a good approximation in the form (Kato, 
1961 ; Saka, Katagawa & Kato, 1972) 

Do(so, So)= A6(sg) (25a) 
= A sin 20B~(Xo), (25b) 

where Xo and xg (which will be used soon) are the co- 
ordinates perpendicular to the O and G beams respec- 
tively, and they are (sg, So) times sin 20B. A plane wave 
can be represented by 

exp i(Kxxo)= I exp i(Kxx'o) . 3(Xo-X'o)dx'o, (26) 

where the irrelevant part exp i(Kyy+Kzz) is omitted. 
If  the incident wave, A~(so), excites the wave field 

dg(xo, Xo), the plane-wave solution must be 

dff(Xo, Xo; Kx) =(A sin 20B) -1 I exp i(K~c'o) 
t o 0 x d~(xo-xo, x 9-xo)dxo, (27a) 

where (xo, x~) is an entrance point, so that x~ is a func- 
tion of x; depending on the shape of the crystal. Con- 

/ /  
pCXo,Xol ",,,Z,~ x xg 

Fig. 3. The case of wide-beam illumination. ABC" The entrance 
surface, BAD: The exit surface. [From Fig. 1 of Hamilton 
(1957) and Fig. 2 of Werner & Arrott (1965).l 
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sequently, the plane-wave solution outside the crystal 
can be given by 

D~(Xo, Xo; Kx) =(A sin 20B) -1 I exp i(Kxx'o) 

xl~o(Xo-xo, Xo-x'o)dx" o . (276) 

Here, capital letters are used for the wave fields and 
the position variables in order to emphasize that they 
refer to the observation point outside the crystal. Ex- 
cept for the phase factor, D~o(Xo, X o) is identical to 
d~ (fro, fro) in which the coordinates (fo, fo) represent the 
point at the exit surface corresponding to the observa- 
tion point (Xo, Xg) as shown in Fig. 3. It is significant 
that DoP is proportional to the Fourier transform of 
Dg, the results having been obtained previously in a 
different way (Kato, 1961, 1968). 

The integrated power in the plane-wave theory can 
be defined by 

P~= K-1I  I I ID~I2dKxdXodY, (28a) 

where dKx/K= dO is an angular differential and the co- 
ordinate Y refers to the axis perpendicular to the re- 
flexion plane. The integration S~dXodY must be taken 
over the exit surface. Thus, from Parseval's theorem 
on the Fourier transform, we see that 

out any phase relation and when each source has the 
form (25). This is the most realistic case for diffractom- 
etry, in which the crystal is illuminated by a wide 
homogeneous beam. 

6. Conclusions 

The present paper is a preparation for the following 
one. The approach adopted here gives a way to take 
the ensemble average of the intensity based on the wave 
equation. For two extreme cases, namely ideally per- 
fect and imperfect crystals, the theory can predict 
exactly the same results as those of the conventional 
theories. No ad hoc assumption is made regarding 
wave coherence. The varieties of the intensity depend 
entirely on the correlation of the lattice phase, i.e. on 
the nature of the medium. 

The present theory is based on the spherical-wave 
theory. It is, however, worth mentioning that the 
present formalism is not limited to such a special case. 
As described in § 5, if one obtains the intensity field 
for a spherical wave, mathematically speaking for an 
impulse of J-function type, the integrated power can 
be obtained by means of equations (28) or equations 
(30) for the incidence of a plane wave or an incoherent 
wide beam respectively. 

P g=2(A sin 20B)-2 1 I I ID~lzdx'°dXgd Y" (28b) 

The result is useful for calculating the integrated power 
Pg from the spherical-wave solution discussed in the 
previous sections. 

As the simplest example, let us consider the kine- 
matical case in which IDgl 2 is given by IAI21xgl 2 as dis- 
cussed below equation (24b). With the use of the ex- 
pression (2), and remembering that dx'odXgdY= 
sin 20~d(volume) one can obtain the integrated power 
per unit volume, equation (6), based on the conven- 
tional kinematical theory. 

The integrated power due to a spherical wave of the 
form (25a) is defined by 

P~ =A-2  I I [D~ [2dXod Y. (29) 

Equation (28b), therefore, can be rewritten as 

P~=2(sin 20n) -2 I e~(x'o)dx'o. (28c) 

This is the relation between P~ and Pg. The integral 

Po= I Pg(x'o)dx'o (30) 

means the integrated power when spherical-wave 
sources are homogeneously distributed with a unit in- 
tensity per unit length on the plane Xo in Fig. 3 with- 
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